Moving least-square reproducing kernel methods (I) Methodology and convergence
نویسندگان
چکیده
This paper formulates the moving least-square interpolation scheme in a framework of the so-called moving least-square reproducing kernel (MLSRK) representation. In this study, the procedure of constructing moving least square interpolation function is facilitated by using the notion of reproducing kernel formulation, which, ‘as a generalization of the early discrete approach, establishes a continuous basis for a partition of unity. This new formulation possesses the quality of simplicity, and it is easy to implement. Moreover, the reproducing kernel formula proposed is not only able to reproduce any mth order polynomial exactly on an irregular particle distribution, but also serves as a projection operator that can approximate any smooth function globally with an optimal accuracy. In this contribution, a generic m-consistency relation has been found, which is the essential property of the MLSRK approximation. An interpolation error estimate is given to assess the convergence rate of the approximation. It is shown that for sufficiently smooth function the interpolant expansion in terms of sampled values will converge to the original function in the Sobolev norms. As a meshless method, the convergence rate is measured by a new control variabltiilation parameter e of the window function, instead of the mesh size h as usually done in the finite element analysis. To illustrate the procedure, convergence has been shown for the numerical solution of the second-order elliptic differential equations in a Gale&in procedure invoked with this interpolant. In the numerical example, a two point boundary problem is solved by using the method, and an optimal convergence rate is observed with respect to various norms.
منابع مشابه
Moving least-square reproducing kernel method Part II: Fourier analysis
In Part I of this work, the moving least-square reproducing kernel (MLSRK) method is formulated and implemented. Based on its generic construction, an m-consistency structure is discovered and the convergence theorems are established. In this par\ of the work, a systematic Fourier analysis is employed to evaluate and further establish the method. The preliminary Fourier analysis reveals that th...
متن کاملMoving Least Square Reproducing Kernel Method ( III ) : Wavelet Packet & Its
This work is a natural extension of the work done in Part II of this series. A new partition of unity | the synchronized reproducing kernel (SRK) interpolant|is proposed within the framework of moving least square reproducing kernel representation. It is a further development and generalization of the reproducing kernel particle method (RKPM), which demonstrates some superior computational capa...
متن کاملReproducing Kernel Hilbert Spaces in Learning Theory: the Sphere and the Hypercube
We analyze the regularized least square algorithm in learning theory with Reproducing Kernel Hilbert Spaces (RKHS). Explicit convergence rates for the regression and binary classification problems are obtained in particular for the polynomial and Gaussian kernels on the n-dimensional sphere and the hypercube. There are two major ingredients in our approach: (i) a law of large numbers for Hilber...
متن کاملStabilized Galerkin and Collocation Meshfree Methods
Meshfree methods have been formulated based on Galerkin type weak formulation and collocation type strong formulation. The approximation functions commonly used in the Galerkin based meshfree methods are the moving least-squares (MLS) and reproducing kernel (RK) approximations, while the radial basis functions (RBFs) are usually employed in the strong form collocation method. Galerkin type form...
متن کاملA New Approach for Solving Volterra Integral Equations Using The Reproducing Kernel Method
This paper is concerned with a technique for solving Volterra integral equations in the reproducing kernel Hilbert space. In contrast with the conventional reproducing kernel method, the Gram-Schmidt process is omitted here and satisfactory results are obtained.The analytical solution is represented in the form of series.An iterative method is given to obtain the approximate solution.The conver...
متن کامل